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1. nt ro(LIC t iOnl

In Chaip te r- Q o f (1J.i nsev itnd SImon deve JCp -;ever i!

interesting d it i ta I phase lock-ed oonTs I)I'IA. foi t he purpose cf

svmhoi synchroni zat ion. In t O -i't!ottoetiMate C ain:'

of the epoch est imation errors, it wans issumed thi:it the P.

adjustment rate is slowad the errYOrs son] I . Ilhon all Cev!l T

phase locked loop JPLL) was found, with an 'ekquivalcnt- wh etc

" i se inlput . The error variance .o' a I inea riizd form of this 1

was then used as an approximaition to the crr-or var ianC Cf tle PV

Ini thle development of' such, :j continuous tire pa ramet or arpi-oxiumat

there are (0r must bc2 either inn pi c it or explicit non ilit ude

scligs of the signal and noise and of the sysem an;.B

speak ing of an ''equivalent PIA''", and us inig it to estimate thle e-rr

variances, there is at least the tacit recog~nit ion that or or

suitable amplIit ude scaling of the err-or soquencc , there is a con

t inuous paraimeter interpola tion of the er-ror sequence which i-

close in some stat ist ical sense to tile output of thle'ei alC

PIA . R~ut thle exact sense in which the 11,1 is" ''eui va 1 Cot ) ,i- 0l-c

is not c lear , o % i rig t o the jT F formalI it 0 f theC doCVCe] onxe lt an 1)

o t a s pectral analysis t echni(que which fixed thI tae aiac

and doos not all ow i t to va ry nat ural1lyv. Thie voe ra I i de a ~i

however, since owing to "'cent rml limit theorem" I ike effocts ti

complicated detai led structurec of- the PPI I, ~n be rnn~d

a PLL with a white noise input, which is easier to analvce. I h'rt

speaking of closeness of a DMAI, and a I'LL, we m iolit mval thSat i t

the DILL were parametrized (by, say, thle symb l tcri 1 ) or 1)

aI system gain), then as the parameter conivcirs -o to (say) :orn, the,,
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output of the DPLL converged in a suitable sense to the output

of the PLL. Here, a systematic and rigorous way of doing this iv

developed. The technique has wide applicability. The specific

end results are nf the same type as obtained in [1', except that

owing to the "weak convergence" nature of the approxim.ation, much

information on the DPLL beyond the error variances can be

(approximately) obtained from the limit process.

Recently a very useful technique [21 has been develope,. for

getting precise (in a sense to be described below) diffusion limits

of a sequence of suitably scaled (and suitably interpolated into a

continuous parameter processes) stochastic difference equations. .

these methods are applied to the synchronization problin, and th-

correct approximating diffusion is obtained in a mathematically

rigorous way. The limit could conceivably lie interpreted as ta" c

output process of a particular PLL whose input noise is white
+

Gaussian. But the important thing is that it is not necessary to

make ad-hoc assumptions in the development. 'tihe method can be

used to handle a wide variety or structurally similar problems

in a systematic way. For specificity, we treat the scheme of

Figure 9.34 of [1] under the noise assumptions there. 1'iit 1

for the system. The same general scheme has been applied to other

problems in [31; namely, to get diffusion approximations to the

"state" processes of a learning automata for adaptive telephone

routing and an adaptive quantizer. The diffusion approximations

are much easier to study than the original processes. Related

"continuous time" methods have been applied in [4] 4 several

"continuous time" problems.

+We do not emphasize this because the limit equation is quite
simple-and an interpretation is not helpful.



The specific problem, scaling and interpolation will be

developed in Section 2. The development is for the simple case

connected with ([1], Figure 9.34). Extensions to more general

noise, intersymbol interference and clock drift are discussed in

Section 5. As will be clear, the technique gives more information

than simply an approximation to the error variance. In Section ,

the general background theorem is given, together with somc

definitions from the theory of weak convergence of a sequence of

stochastic processes. In Section 4, the theorems of Section 3 a;e

applied to the problem of Section 2, and the main limit theciere

obtained.
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2. The DPLL; formulation, scaling and interpolation

The circuit is given in Figure 1, and Figure 2 gives the

timing sequences. In this section and in Section 4, the signal

sequence {s n } is a sequence of independent random variables,

where sn = A and P{s n = A0 } 2 and s(t) = input signal

s in the interval [nT+50, nT+T+6 where 6 is the unknown

epoch which is to be estimated. Since only thie estimation trrors;

are important, with no loss oi generality we ;et 0 = 0. 1he

input noise nT(t) is white Gaussian, and its' power will hetnT

given below. Let wT(t) n s)ds= Wiener process with vari!:.e

7,Z1t. We subscript nT() and wT,') by T for reasons to ?e

discussed below (2.3). More ;eneral signal and noise models will

he discussed in Section 5. Let L denote the nth estimate ofn

6 and set 6 = (E -0)/r = nTn n o n

The algorithm. Using the two parameters, X nX n9 define

e (,- (see Figure 1) byn

en( x n-l , \n) ISn( 1 -- n-1)' + Sn+1 \ )T

+ WT ((n++A+Xn) T) - wT((n+A+X 1 )T)I

ISn ( 'n-I 1 )T + Sn 1 (I -A+Xn)T

+ WT((n+2-A,+Xn)T) - wT)T )

Throughout, it is assumed (as in (11) that A < 1/4. Wjt!-

use of a general finite memory linear filter, { n). ", , is

defined by
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n + n i=0 i n-i n-i-l' n-i) '

(2.2) K

A + - _ e ( -n+ T L i n-i n i-l 1 i '

where > 0. The technique for (2.2) is very similar to that

for (2.3). The limits all have the form (4.1) and differ only inI

the power of the input noise and in 0 being replaced by _!7

We will work with (2.3) for simplicity, where g (, ,, - C ' '.

(2:.3) .n 1 = + e (,) = + (A:n;n+1 n T n n-l'n n n -' n "1

In any particular application, where T is fixed a-priori,

0oT is determined from the problem data. But, consider a sequence

of systems of the form (2.3), the sequence being parametrized hy

T 0 0. Assume, for purposes of this argument, that - 0, and

+ fT 
n

that s + JnT(s)ds = yo is used to estimate s via a likelihood

ratio. Thus, if yo > 0, then so = A0 > 0 is chosen. Note

P{choosing so  
=  A0  > 01 So  

=  -A = A(I°I. dN(0,1 ,

T

where N(0,1) is the standard normal distribution. Thus, a natural
2

parametrization is oT = o'T for some constant c. Note that the

(noise power in a bandwidth of order 1/T)/signal power) is

constant, under the above scaling.

As y - 0, the continuous parameter inter-',ation (interpolation
interval Y) of X n converges to the ;ulution of an ordinary

n
differential equation



which will not yield the detailed path information which is

desired. A further normalization is required for thi, i;

convenient to write gn(X n - l ' n ) in the form

gn(n~l\n)= i(1-A- ., I) + +n),n -- l n-1 n + '+ sn+1

4 £* +A ) - ,(n+A+, In n-

n- 1 'n 
] : "'

where w() is a Wiener process with variance +

Next, define Un = \/ and define the process U y
n n

U '(t) =-11' on each interval [n ,nv*',). +th p rameter
n

re pla c in, o II define '(0 ,A\') --: Pn() and define

n( -  n) n n We can now write the
n nl-I' . n n-l'n)

normalized and centered iteration ,is

n2a)U =l +. y£(x( \, j//¢q + , 7tx
(2.4) Un n-' n n -' n

d

Define the derivative a-g(',kY0 . It can be shown that

0 0. For the analysis, it is convenient to expand (2.4) a:;

(2.5) I+ I = U - iU 4 v n + -n(T•nl n n n n

where vn are O([AnIX Xn~ l-* U' -t) ) and O(x,/ x is

bounded.

The limit theorem of Section 4 implies that converge'

in distribution to a particular Gauss-Markov k!it sion U as ,

+We can define w(t) = wT(tf)i/-.



This I im it would be the output of the "equi valent'" P1.1., and on I

makes sense as a "near cquivalence" if Y is small. In the cited

section of [1], it is also supposed that tile error estimates

change slowly (small . ) and, in fact, that the n are "const 't"n

over a "lonig period" of time. The latter extraneous ;issumptiton

is not needed here.

Properties of §A } are obtained from r t , ,. ,n n
or, equivalently, from (n t)

2.0) ;;- U(t) VT tJ (n'1 )

\l though the result does not depend on i t , wou I d no rmalIy 1 . p:,

on T. and the limit results sugg'st the appropriate form of t!

dependence. Since we are concerned with the behavior of

over real time intervals (n: n'T < t), by (2.b) we should have

0 as T - 0. If '/T - 0 as T - 0, then (2.6) implies that

the system output becomes {iLnu. constant on anv finite time

interval as T -1 0. Let nT t. If y/T ' as T -, then

t /1 {- IJ(nT.Y/T) - U(') (TJ(o) has the limit distribution,[t/T]

as t + of U(t)). In particular, let "y cT , I 1. Then

the smaller is ,, the larger are the errors. The best and most

natural form in 'c = cT. Then the change of Xn per sample is

proportional to the symbol interval width. The initial error

must he 0(A/-), for otherwise the system (2.3) will not be able

to improve the estimate for small '.

*1
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3. Mlathemnat ical Background

3a. Remarks on w.eak conver~ence theory. The theory of weak :Or

verence of a Fre1uence of r)ro hah i i tv measure s 1 i r Ccwr, w >

which has found applications in many areas of applied rc9ahi I

o[, Onl" a feor commentF will he 'aade here. -

uL 1 treatment, see 'tf . et 1[,C ) 0e T.

valued funct ions which are ri cht continuous :jnd K: c Ic ,

KiMits. The piecewise constant ariocess U Ic a n be trcated

* as an abstract random variable with values i !) C), and .

* a ,ro!ajbiIi t measure P. on it, 'actual ly o the ;etl { .

defined b a certain topolooy, cal i. t ' .k 1rok: J tor) L"

this need not concern us here). The senuence +; f

be t ight if for each * > 0, there is a compact set .

tich that PU ' € K : - - 6 for each The set1ience

fII converges weakly to a process U(. if .. h: ,Ih

in D[0, ) and induces a measure P on it, I.if for eve rv

bounded and continuous real valued function r- • on D[C) oj

Fty)aP (v) - --(v)dP(v) as y 0. If 1 . is ti cht, then

each subsequence contains a further subsequence which conver ies

weakly to some process with paths in D[0, ). ill Sect ic. I, it ,,i

be shown that for our problem all limits are aictuallv tle sane :.

Markov process. The limit will give us the (e: red info'wation <.nAT

the errors and dynamics of U for small .I Weak c(nvergence

a substantial generalization of convergence in distribulion.

Theorem 1 below gives criteria for tightness an,, wra ,-verzence t I



specific limit which are readily verifiable for our problem

in terms of the problem data. Despite the abstic i*!ramcv. ,-rV.

te chn ique s a re rea di Ily usabl 1.cOn p roblIems sutc h as, t u r c o

and extensions, and the methiod of proof of 'ihoiorenim 1 sz

relatively straigit forward way in whichi the albst ract Theccr,-in

often he a-,c

5b. Remarks on ,he lim t theorem. LeCt P -poc'

Wiener nrocess (covarianco t' andl x(. t'-. solut ion to

stochastic different ial equation

(3,. 1 ) dix =k(x,t)dt + v~x ,t)dB,

where we suppose that k a I'ad V( ) are continuous ind ti

(3.1) has a unique solution (in the sense ofL distributionsi . L-ct ,

denote the set {,,i < n, K < n}, and Iol I; d Tn
conditional expectation gi vcni R. Define thecoitoa "xeh

TI

di fference" operator b bV A , i-1 ', 1 J

f(-" is a function which is constan t on the, jintrvaIs LTIY,n'-y-. anti

which depends on :It most R. at t inei ny. '!ie ope ratr A\ "t, f-; ned!b

(3.2) Af(x,t) =k( ,t) + XV t

is the differential generator of the ,,r o cess ( 3. 1) 1

(3. 3) A Y (UN(ny) ,n ) - (A+/3t)f(:I T!Y) -~0



as " 0 for a suitably lar, e c :-:s of functions f, then, ur-(-

some subsidiar>" conditions one could concl ude that -

eakL'. Unfortunately, (3.3 f hard to ret ,0I . : ,.>

our case. Kurt: [Z showed t )-it ; C . o ?,d< aiu i ,

F is "erturbed"' to some f' which is closc to F .. :,

s one subs idiary condit ions the processes 1% i I co~vere. ",

ILjs' 0 , int of VieW wa , developed -In( . ip!i.ed it, 5 1-

we use the form developed in t21, which i 1ic . ,, n te-,

,.rpses of this naper.

For purely technical rea-ons i n the p,.o . , .

bound the procc:5 U-:(-) in th, manner given c ...

is used only in the theorem stitc-eont av-, :> ;i ,

tn the proofs. It does not affect the resutt. -

sc..iue-ce ) l llC.d ,nroces:Ces convCrsves %,ns x , v !!'

tlhe oiina L sequence converges as desi red. Let -) denoe .

continuous function which is zero in {x' xoX !,,:, 1 "

unity in :x: lx < N , and is infinitely di. ren t iaba '. 'iIc

I ly N , by

S3.i) U'r' ' N t ¥yN [y'' N  Yn "N-1
n+l n n n n-I n

Here u defines The sequence { '

ni n1

stopped once it passes N + I. let N be the piecewise U

constant process which equals [l'N on the +ntervoin 1nt . .

in Theorem I, for each N, AN  stands for an opc rater of the

(3.2) whose coefficients are continuous and eq. ;aone of the

operator A in the set {x: jxl < Ni. The <v;,', ions .,N a in1
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Y,N denote (resp.) expectation conditioned on fN = '

n. and tlie "cnntj~fal average difference" orerttY ',

AY Nf(nY) [ NU'Nf(nY+Y) - f(nY)]/Y

Theorem 1 is an adaptation of Theorems 2 and 3 of [2] to cur

problem. We use 2 = set of functions of (x,t) with compact

.mupport and whose mixed partial derivatives u to order 3 are

;n t in uous .

3c. The main backg nd theorem.

Theorem 1. Assume the conditions on the coefficients of A" and

c, i ven ao i ( on the uniqueness +., the solution of (3.1). For ench

integer % and f(.,) E 2, suppose that there is a sequence of

random functions fY,N(.) satisfying the following conditions:

f N (. is constant on each [Yn,Yn+Y) interval and depends only en
UV k N < n, Y,N t___

U N n, , i n, there. For each N and t , (recall

U N y N
f .. n)

.3v) sup Ej fr'N(ny), < , sup FIA ¥  N (ny)! < , n, <K

n, Y n,y

(3.6) El fYN(n) - f(UY, Nfy) n 0,

FIANfr,'~N(nY)- - + A n)f(U ,nY)j - 0 as y * 0,

and n) -- t,



1

Then if M > Ci is tight for each N, and N

converges to some U (0 in distribution as " have

U ) ~- x weakly, where x " solves (3.1 wits \ ,

The sequence fU) ), > 0O is tight Cor eat! : i F "cr

each t< 0

(3. sUr lira P{ sup KA 0' ' (n ) - .
K- y >0 Yn<t 0

II



-1. The Limit Theorem

A,; not,. i in Secticn 2, the magnitude of the initial ()fr.,r-

best he commensurate with the ain Y. Otherwise the system of

Fitjure 1 will not function for small and 1. 1 0!r i -Inlicitv

assume that there is a random variable U such that 'i -*

00
as - 0'. In the xork' connecteJ with [1, IFigure 9.341, it wis

impilicitly assumed that U0 
= stadv state solut ion to .1i 4 .

:fhe~ 2. {UJ'(U)} converges weakly to the solution !j

of the Gauss-Markov equation (4.1), as - 0.

(4.1) dU = -UUdt + vxlJ , u(0) = U.

In (4.1), E(.) is a standard Wiener process and (see above -

for the definitions of gn and v sffie bv

v = 2L gn (0,0) - (0,0)][g (0,0) g(0,0)1

+ l[ (0,0) --(0,0)"] , any, 1 ,

Note. The form of v' is similar to that obtained formally by the

method of [I, p. 445-447].

Proof. We need only verify the conditions of Theorem I for

the process {UYN of (3.4), for each fixed N. The proof isn

relatively straightforward. The systematic way in wh.rch the fN(.)

are constructed is typical of the method in othker problems. Henceforth,



the test funct ion f(, € Y is fixed (recall the definition 0

/ given above Theorem 1) and for notational conveon-ience we Cmil

V NI Nthe superscript N on evervth i ngexcept A ' all- ! 11 . % e w

et the perturbed test funct ion f . in the Form f / n,

f(U ,n + (n . + f (nY) + f'(nY) , where the F are to he

chscri sequent ial Iv such that the conditions oa Tlheorerp I ho!;.

start bv applying i5A' to C

A ; N f ,(I f t (U n o( " I
n 11t 71U 11( .1 3 + ..\ f ( ,n ) h . C U ( K n ' N + oY1 ' t n .Y - ' N- Y X

+ f u(U Nnn ) t u n N:?11 . n-l' ;I
1 (J ,ny) .-fuu O in , U n ~ •-Y- ,

+ U n b

+ oln '

.le 0 is a remainder term in the truncated lavlor expans:on :iii.
in

satisfies

"4.4, ,N O(!/2U). n-'A +5 )'

.n nn

For future use, note that (owing to the properties of the htClic

process) for each t O  ' , and N > 0,

lir sup I °l/y 0 .7.r .,

(0 ny<t <t i

im Sup Eo /YOn 0.
y.,O nY<t 1 in'



1 0 introduced below also satisfCy (4.5A kn

On .v the first and third terms on the r ,i !.ht ,I 1 c I ,

rart of an operator such as t /.t + A N Pht. it' l l th

-1.> depend on the noise 1 n ) as wel t s on Y! I an,!

1-'to be "averacd out'. the pert urbat ion t( is ch

".ave' rac out' the term. c ,
Un

i ( ,nY 1
ULI 1 0 1 [1- '

I 1 11 i - 'I TI

For our particular problem, due to the truncation e ffec's of ,

: _ 1. t for snall Y and the signal and wi ne, r . ... .Cnr'onc; t

- , ) fo r i n) are independent of nli n,
I - 1 n - ' -1'

,hus, the sum in (4.6) reduces to a single term. The gencra1 (and

,e cnp 1 i cated than needed) summation form fo' S is introduced

,. onl, because it is the ppC ate !'oIn!" l~ n " oI te

.r~' ri i :at io ,; of Section , nd I 1 7 ,-i itit tC c t e dI cjss ioi

hle rc. or the si ae reason , A , ,re 1nt rsdu,-C, in a sum at ion form

bciw, even though for the protler of this ,ection, the suTm redices

to ;i sini le tern.

4When expectations of the form 1 '(n., , etc., are written, we
~j n 'n

mean i.., the N are treated

as parameters and cons idered to he fixed when coripu in , the expectation-

Also j(Xn) j > n, s defined b .t ,' h A---n -'n n-l ,



1 4

[( a p(n t 0 l v i I C!C

N LU F .
(n ="I1- N ui n1U"

- 0  nnr N 1+l1

N, +1 nX ,X n+I1 n K)

The part of the last term c o ttil hin h the I . ' f.L.12;l .

of the next to the last terni of (4.3). Also,

22(4.8) YEn YY+n-i' " )E()(N \n))2
nF~( n-Inir n n

For future use note that for each t 0 > 0 and i = 0,

(4.9) lim sup f (ny)! = 0 w.p. I, lIr sup F f.(P'Ji = 0.

Equation (4 .9) will also hold for the f f introdu LjejQv,.
Replacing U and by ,an L! rep. , in the

n+l n+l n "

first term of (4.7) alters that term only by a quantity 0n

_nV
satisfying (4.5). In fact, o.n is bounded bv (4.10). All the o

introduced subsequently satisfy (4.S), but explicit bounds will i,

be given.



0( ... ... r ) N I

fli iiirn~ n li ....I' '

n n ' n 11 + 2-A 114 '

+ith A n+ replaced 1)v I I in the first term of (.'

that term has the value zero, due to the independence cithe in -

crements of the Wiener process over non-overlappinQ tie ic-valz.

\ext, we turn to "avcra,,invi out" the , term o' !" hi-

wIll he done in two steps. Nefine

f y(nY) = ry fu(ul-Y, 11 Ty) (U E -

1i=n.

Tf~ (U ).YN>n-'n

.n --1 n

Applying A to f (n¥) yields

S1 "fI

~ N

+ 1) n N* +1 ( +3'n n+I n( fn l +U n k

whore the i due to the repl Iccment o' ni + 'hv I, I he

func t on f sat is 0 . .9 hC first tCr1 o t1 11 C

ne at ive of tI C, T tero .1 . Th mifrle ttelr,, of (4. 11 ,i 1 3aV

to he nerarke fmrher.
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The middle term on the right side of (4.11) can be expanded

a S

(4 1 " FYN f (-",r.()b( t¥ ,n'r)b..(t)  (u)U
1n [uU n'n N( 11 (U, n N .+ n ) 1 "nt I + Ir*,n

'Fc -....,oncft r 11.1) ivo i 1 ( ) cNu C rittn2 s

vTr f('Y tnr 'b 1 j 1  \N )' ( \ ) ' + * o

( .t~~ l X u( ' n ') b N ( U , ) ) u I',l ' ~ -l

n n n]I\n" ii+ n  ' n- :

"T':.. L-,,,ponent -)! [ 1 !2) involvin,,, Nf ' a he written :I-,

"f(Un'n~ n Y)~ 1 '. n 'n + + 1

t1e Firt ternI of which equals zero bv virtuc of thC i ndCpendencT 01

the >-icreunents n F the Wiener process over non- .verlapping, t ',le

i t e rv a] s.

Next, define f. by

C o

(N N Y' Q

(nrl = ( ? ( 11 ,n-Y)b (Ij I) (\ x v11

44 ' . [~k n' 1 11- n n -

+ € f(IJ 'nY)bN(UnJ =nn 'n+1 n"

By the comment above (4.14), the second sum is zero (in the morc

general cases of Section 5, it will not necess.:"ily be r ero).

Again, by the independence of the increments of w(-) over non-

overlapping time intervals,
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N k 11 n . n-l' n) k nkn ) j(In1 , n̂) , (k

for i > n + I and also for i = n if k > n + I (in which case

both sides of the above equations equal zero). Thus 4.14) euual

. f ( f W n n n u n 'ni nn -I' a + ' a n-I a

Tt c:-l ke shown. that

N= -(4.15) + o2 + o(Y).

One component of (minus (4.15)) is the negative of the principal

part of (4.13), the other component is the "averaged" centerin; te r,::.

2lso, satisfies (4,9).

ummarizin, the above calculations and recallin.c that

(n', f(U ,n) + f (n-f) for each t ... X <

nn(4.16) tim sup E[ f'(n')- f(Un,nx )[ =  ,

YO n t0

lim sup f (n-y) f (Uy n- w.p.
Y-O ny< t

Also, taking advantage of' the cancellations in 'w'e[fli f : we

have

AYNf (nY) = f (11 ,n y) - (uOl ) F ( , ',) rN(IY)

(4.17) + - (fuu1 yl  , bN(U )lr (\n" W

+ ( (Un'nY)bN(U ')) n l(V +j n(n - n.
Sn N n u 11' 11 fl fl-Il n n
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Chan:.in 'nV to zero in the right side of (4.17) alters that

N
term hv j(7. Define the operator A bv

fl -+ " + IS n '- -! - t n

= tirst four terms on right of [4 .17), but with

•k u n ) ,l

replaced by 0.

B' the prope rt i es of b (.), we have VN(u,t) v-, kN Iu.t)

I hen u < N. Finally, since the solution oF (4.1) is im ini ,

:i11 the conditions of Theorem 1 hold and the proof is co,",,leted.

Q . F .



S. Extensions

5.;I General noise and intersymbol interference. Only an informal

di s ussion w ii 1 e ivel hith the appropriaite stalI in-, t11C 1ethIOJ

Siyiilar to that of the last section. l.et s 1 t) + T(t) denote

.he ir(ut, here ST ) = input signal, innt- w stationalrv inTt

noise with -ero mean value.

Suppose that the channel memory is given by a functio h.t-.

lo keep the system from degenerating as T- 0, we use hT(t) -

h(t/T) for some transfer function h(.). For notational convenience

assume that h(.) 0 only over a finite interval; in particular

let h(t) = 0 for t > 0 for some integer Q. Let the waveform

transmitted in the interval [iT,iT+T) have the form sil(t-ii,

where q(u) = 0 out of [0,T] and fs is a stationary

sequence. Then

sT(t) = [ ilh( )r L iT)d .
t0i= T-Q 0

Define

t t /1

ST(t )  Jo sT(u)du, S(t) S T /t)IT .t/

The noise model is based on two considerations. First, for

simplicity, we want the process .. ) to have only a finite memory

(convenient, but not essential). Second, the c,nsiderations

discussed below (2.3) still hold here; i.e., we want
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var . 1 sds c- - or some 0. To accomplish those ,,ims

e at roduce a .stat ionary random process , .efi no 'n e1'

assumel that the," 15 an inte ,r t such )kII t f ov ,ici, -

S , s t indepe nde t ) 0 is d !,'1t s , t0 + , a:J -,'t

t I t

The ini tenes assumptions c fonec tcJ \ t\ , 1. t , o'

that t he sums dc F in in f in Iheorein c ot a i n on I v i ait

number of terms fuith the sina! mI d noise of this sub.:cct ,' r:.-'

The 'tails" of these sums are al :er'o 6y the finiteness ud i

dependence assumptions.

L 1 !



Next , define t(j ,'), gC ') t] , i , ) as abo e (.

but with the noise and siCgnal processes of this subsection; e.:.

I has the representationgn

n , = (n+l+,A+\ ) S n+ A+A ) + W'(n+ ++,' - ,( +

S, (n+2--,+\' rtl+ I -, +A + y f + "f1 +2 ,'

Ad -in, set ( .)" and suppose that '- > 0 I f other",'s-

the system (2.1 will be unstable for small > 0.

We 1ill not o into the details, but the method or Theorer .

works here Giso. vi\en f C 2, the general (finite) summation

forms of the f are used to get the perturbed test functin

fT ,* (recal 1 that superscripts N were usual ly mi ted n

Theorem 2). Ke need to verify that (4.9) holds, and that (4,5)

holds for the okfN error terms. There can b verified under

reasonable conditions on . Assuming this, Theere:, 2 hlds

but with the first term o f v replaced by (the sum contains at

most :ax(Q, R) +1 terms) .

2 F, + (0 O) )( , .
k=O

5.2. Random clock drift. For simplicity, return to the nroblem,

formulation of Sections 1 and 2, but suppose that the transmitter

clock drifts. In particular, let the signal take the value

s(t) = si  on [ Ki,-+l ) rather than as [il, ir+r) , w-here

to Tn+l = n + TI + 6n+]' where 6n is e, ere mean random
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n

variable such that 6n/T is smaiI. Write = 6.
+ Te svstem isien by Fiure and

II n

denotes the esti ,Ite Ot the epoch 610. Set . 1.T. W (

u-c the algori thmi (2.3), (.) which we write in the form

= . + L /' /T)11i+ 1 n n el n "

The i nteivrator du nnin: t- .in is stp 1 1 i en t I irc m t ' w ,i ,

the current definition of -igure 3 s mere yV :1i 1 at ien

of Figure 2 into the "Kn notation. I

part icular, note that (n+T + T + 1 + a 1d
n-1 n- n

n + l -.I ' + n -1 -I + . IT + n n-n-1 "l1) n-1 n n"

Define gn tn-1 n - n 1 /T 
? /T)/T as in Secti on 2-1n n-1 1 11 n- 11 l

Re Kerring to Figure 3, note that

"~ ("n-'. = iw( :L+ +1 I/T - n~l/T)-w(A+n + /(-L./YXT- n -1' n n n+ nl n. I I+"

n n+1 n+-/ + S1(\ - /T)
(S 2) tI - +  

1

(5.21 - w(1-A+±X~tn 1 /r6 1+/T) -[w(1-A+\ n l+</-4/l

+ Sn [({1- 1 11 nn+I )/T)] + i[ 1 1  1 -c n+1 /

gn(X,,') is defined as in (5.2) with parameters X,\' replacing

X n-i'Xn' resp. Let -(g,X') (A X( , '). Next rewrite (5.1) as

(5.3) Xn - 6n n l/'I + n a ' )

n+l n n+. D n n- I

Define n by 6 n/1 T Yr V/y 4, Def ine n u ' n and 11U as



2.4b ,ve t, Le,. i.inq the , 5. ") let - d

anu . tlis <imTek that [ 0 A. :\S in Sections 2. .1, ,, wor with the

2irt dl lv neari :cd system, which Is

: I r -- i o1 n 0 , - , I- (1- ;
. c 'In I t ( t t

T n I- s I Il t ei ' Ic n

a , tk ", - t o errc 1o t er ! ,y!!.. ,

t " e c) I c,

01 the ni -tt cim ri: met ttc V ' :!,n t I, l,.,-., ..o

" Iic 0 ut "I , i 5- .. a' . .f ln ol t- K. s"

,)Sr c 2 C>. 1'. " . i . . , v t he < '

I.;

( those assumrrtion~s are not necessair\ . milt s imnl fv the d]iwu:<<.u

IF order to e -tccti velv track chn-,pies in thie t iming, the .i e -

, must be "of the order of ," )loosel speak inc In part i ' 7 r

1,e assme that is stati o nar-, with ,c'va'iCnce OV.1 d-,nn Tin.',

Ihe mor thro e ". carei c 1 now le ar ,] ied and the 1in:lt

PP.tOC'OS 5 is

where v is (de Fined n Th.eor,;, .c1

1 i=l

The added term in (5.6) is due to the {J clock drift process
" II"

f q)n Y} were not indepen(dent of w(-, then there would he ann
additional "ecros', erm in (5.o .



i: RI tF FR EN C ES

I W.C. Lindsey, M.K. Simon, Telecommunication Systems __ir_,

Prentice-Hall, Englewood Ti T-s, 1973.

2. HI.J. Kushner, "A martingale method for the convergence of a
sequence of processes to a jump-diffusion process, to appear in
_, lW'ahrscheinlichkeitsteorie, Summer, 1980.

. l{.J. Kushner, Hai Huang, ":\veraging methods for the asymptotic
analysis of learning and adaptive systems, with small adistment
rate", submitted to SIA\l. .J. on Control ;nd Optimization.

4. H.J. Kushner, "Diffusion approximations to output processes of
non-linear systems with wide band inputs, with applications",
to appear IEEE Trans. on Information Theory.

5. I.E. Igiehart, "Diffusion approximations in applied probability",
Math. of the decision sciences, Part I1, Lectures in App]. Math.,
Vol. 12, Amer. Math. Soc., Providence, 1968.

6. H.J. Kushner, Probability Methods for A proximations in Stochastic
Control and forTlhiptic qu ations iY kI cmi c Press, Nw---i- YP,

7. T.G. Kurtz, "Semigroups of conditional shifts and approximiat ion
of Markov processes", Ann. Prob. 4, pp. 618-642, 1975.

8. !H.J. Kushner, "Jump-diffusion approximations for ordinary
differential equations with wide-band random right hand sides",
SIAM .J. on Control and Optimization, 1-, pp.-29--T1 , li'9.

9. C. Blankenship, G.C. Papanicolaou, "Stability and control of
stochastic systems with wide-band noise disturbances, SIAM J. on
Appl. Math. -4, pp. 437-476, 1978.

10. P. Billingsley, Convergence of Probabilit,Measures, John Wiley
and Sons, New York, 1968.

i



F"jbsolute

yr(t)dt v

YT(t)= timing9 digital
St)±nT(t us filter

~i~jtevile R

(n+-A )+in-2

Fig. 1

TheDPL odlabs 1it



-t ii

+1 -

I - .~

- r-i ~)
+ - C.)

- + ~ ~

-, ----- -.

K-
+ .-

H -~ 0
+ - ,- ~ H-

+ >-J -~ -

+ +

- .--- ' ~ -I

tJ~ -~ - 2 0

H

-
C.)

C.) U
-~ 4~) C)

-4
7 -

+ -
C,

H 0 4-

-ci '-,

+ +
H- C) -
'-'4- -4 -~

' .j ~L) 4~)
H
Ii,

-, .- 4 -~

-~ H-
) -
+

H -~
0

.4. -4 (~. --.4

'-4 +

"-4 0 L)-.

'F ,~n)

+ 0-

H 0

-'1
0 -4

s-.
0

o I-'
'V
4'

- ~

-~ QjCJ
CJC)

J-.. 00
.0

0.-

* - . --. ~ .



-i -~

0

1-
/

-TI

C)

L

h

0
II II -~

o I
0 ,-' + t

I I

I~T
*1 '-, j I (rb>

+ + -

+

I -.

I-., I-' - -

-~ - 4A

+ ,-' .; h
4. - - 4.

:5+

+
C-

+



T FFUSION APPROXINLATIONS FOR NONLINIAR PIIASY LOCKIA)Lo-

TYPI- SYSTE\IS WI TH WI DE PANP I NPUTS.

HIarold J. Kushne r
Division of Applied Mlathematics 'I Ing inceri n(,

WilIfred 1. Y. Tl11*
Division of Applied Mathematics

RBrown Un ivers it y
Providence, R.l. 0219121

November 1 , 1980

This research has been supnoited in part uinder contriact #AFOS1-R-
7630031) of the A.ir Force of S;cienti fic Research, in part by the
National Science Foundation uinder grant NSF--Lng. 7112946, and in
part hy the Office of Naval Research iinde r g~rant NOGO I 4- '6-C -
0279- P0004.

This research was supported in part by the- National Science Founda-
tion, tinder grant NSF-17NC,. '7-12940.



ABSTRACT

Communication systems often involve differential equations

models whose inputs are noises and signals with wide bandwidths.

It is frecuently of interest to approximate them by some

Markov-diffusion process, since then many analytical and numer-

ical methods can be used. Here, recent results on gettinq diffu-

sion approximations to systems with such inputs are applied to

three classes of detection systems which are very important in

applications: 1). A phase locked loop with a limiter; (2, 1

cuadricorrelator with and without a limiter (the function is to

track changes in phase and frequency); "3) a 'souaring' loop,

whose purpose is the tracking of the carrier freouency, despite

the carrier modulation. In (3), a type of pulse phase modulation

is used. The method is natural, svst rn:i-ic and relatively straight-

forward. Under natural scalings of the signals and noises, the ap-

propriate Jiffusion approximations (for band-pass, but wide-band

noise) are obtained. The approximation is in the sense of weak

converqence. The first two problems have been hard to analyze

owing to the nature of the non-linearity, and the results clearly

indicate the advantage and disadvantages of the use of the limiter.

The third problem has been difficult to analyze, partly due to the

periodicities which occur naturally in such problems. All three

classes represent widely used and important systems, and much in-

formation can be obtained from the limit 1,roccss. For examti). F
the results show that the use of a limiter can actually improve

the tracking ability of the systems, when the noise is small. The



system signal and noise models to which the methods can be applied

is much broader than those used here. But the results, together

with the results in [4] for different classes of problems, illu-

strate the great potential of the approximation methods for prob-

lems in control and communication theory. In certain cases, the

limit processes are of the type which have been obtained via more

formal arguments.



I. Introduction

Diffusion approximations to the output and state variable

processes for several types of phase locked loops (PLL), Costas

loops, and related systems are obtained when the input noise is

'bandpass, ' but with a wide bandwidth. The systems are commonly

used to estimate and track the phase and frequency of received

signals (with additive noise). There is a vast communication

theory literature on the subject, and there are very many useful

methods for the analysis of such systems [11-131. Yet, it is

only recently that rigorous methods for getting the diffusion

approximations for more complicated and non-linear systems have

become available. We will use one such method here.

Three important cases are of particular interest where, owing

to the nature of the non-linearity or other system feature, the

analysis has 1een 'iffi]cuLt. In the first two cases, the system con-

tains limiters (Figure lb), a frequently used type of non-linearity.

Markov-diffusion approximations to the output and state pro-

cesses of non-linear systems with wideband inputs are a major

concern in communication (and control) theory because a large

number of analytical and numerical techniques can be used on the

approximation. The original system is often too complicated for

much insight into its properties to be obtained otherwise. The

fact that the bandwidth of the input process is often wide allows

diffusion approximation or iveraging methods to be fruitfully used

to get the approximations.

Reference (4) illustrated the application of the general
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method of [51 to get diffusion approximations for several standard

problems in communication theory. Using a related result, the in-

vestigation is continued here on the different (and perhaps harder)

prohlems cited above. Reference (61 extends the result in [51 and

nrovdes a simpler proof under simpler conditions; but from the

point of view of applications, the theorems of 15] and 16! are

used in exactly the same way. Here we use the theorem in 16], be-

cause the conditions are simpler. In Section II, the main back-

ground theorem is stated. The basic idea is that the original

system state, xL(.), is parameterized by L, and as - , the in-

put noise bandwidth (BW) goes to . Under reasonable conditions,

the basic backoround theorem allows us to conclude that x (.) con-

verges weakly to a particular diffusion process x(.). Section III

deals with the basic phase locked loop, with and without a limiter.

Section IV treats a form of uiuafricorrolntnr with no limiter, and

tle limiter is added in Section V. (This system is a more sophisti-

cated form of phase locked loop. It is used to track when the

frecuency errors are larger.) In Section VI, we treat a "squaring

loop" whose purpose is to accurately track changes in the carrier

frequency in presence of modulation, and we investigate the effects

of the carrier modulation on the tracking errors when the noise in-

tensity is small. Despite the mathematical nature of Section II,

the basic results can often be uF;ed in a relativly straightforward

wily.

Owinq to the differences in the problems treated here and in
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[4], and in the types of noise used, many of the details are

different. We concentrate on the differences, building on the

results in [4] where possible, but often omitting details where

they are similar to those in [4].
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II. Mathematical Background

We suppose that the reader is familiar with the weak con-

vergence terms and ideas as used, for example in [41, Section 2.

Formally, suppose that the system is given by x = H (n ,xL),

where n is an input noise process whose BW * - as t - 0. We

are interested in showing that xL(.) converges weakly to some

diffusion x(,-)

dx = L (x)dt + 0(x)dw, (2.P

with differential generator A A . (x) /)X + - a. .(xY 2/ix;ixi 1 i 2 i j I D

where a(x) = {a (x)} = c(x).'(x). Define the truncated process

x, by H(n ,x )bN(X ), where b (x) = 1 for 'x < N
N N

and equals zero for 'xT > N + 1. Let AN be the differential gener-

ator of a diffusion process x N(-) with coefficients a(, N(.) eaual

to a C'), and CC-) in {x:Ixl < N1. If [6] rx 'N(-) - xN(-) weakly

for each N, then {xL(.)} _ x(.) weakly. The truncation is used

because it is easier to work with bounded processes in th0- -rr r of

the background theorem. It is a technical device, not an assumption

cn the original problem data. Next, we define some terms and then

state the basic background theorem which is to be applied in the

sequel. b (C) is assumed to be continuously differentiable.N
Let n denote the space of real valued continuous functions on

r
R with compact support and " 'P the subspace of functions in r ,

0

whose mixed L partial t-derivatives and partial x-derivatives are

continuous. Let !97 be a non-decreasinq sequence of o-algebras
t
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with t measuring ,n (s), s < t Letd denote the class of real
t

valued (progressively) measured (-,t) functions such that if a(.) ,

then sup E'gt) , Eq(t + q) - g(t) 0 as 6 , 0, and g(t
t

depends only on n(s), s < t.. Let E denote expectation con-
t

(itioned on . We say p-lim f' .) = 0 if sup , f" (t) and fre
t 00

t>0tot
each t, Elf(Wt) 0 as 0. Define the operator A with douain

J(A )as follows: gu_(A ) and tNg(-) = c(-) iff g() and cy(-) are
E tg(. + ))-g(.)

in(* and p-lim [ - q()] 0. So, A is a type of

infinitesimal operator. The following theorem is a special casc

that in [6]. A more complicated form was used in [4].

Theorem 1. Let (2.1) have a unique solution in the sense

that any two solutions induce the same measure on the usual space

of continuous functions. Fix N. For each f(.), 2 let _

be a sequence tf ,N(. L such that

P-im ifL, f ,"N0

p-lim fL ,N(.) - f(x ( ) ,.) I 0
E - 0

S(N xp-lim jA~fLN() - (A -)fx (),) = 0

E:-- 0

Then, if x" N(.), is tight for each N, x ())h converges weak!

to x(.) as . 0.

Note. Tijhtness is often not hard to prove. For our case *he

method of [7] as adapted in [6] can easily" be used. The

are found by essentially the same method as used in [41, [51, [6],
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N Nf2 LNt)

and [7j. We use the form f 'N(t) f(xL'N(t),t) + f '
i=O or 1 2

where the fN(.) will be defined in the following sections. Hence-
forth, in order to minimize notation and detail, the N and bN will

be dropped, and where needed we simply assume that the processes

x (.) are bounded (as they are because we work with the truncation

tz ,Nx (-)).



III. Phase Locked Loops with a Limiter

The system is described in Figure 1. First (Section III.1)

we work with the smooth approximation gj-) to the ideal limiter

g(*). See Figure la. We get the diffusion process limit x()

of the sequence {x (.) } {v ()0(.fl as +0, then 0.

The derivative of g,(.) is assumed bounded by some K/' and the

tilter in Figure 1 is simply the state variable representation of

an arbitrary low pass filter. In Section 111.2, we work with the

hard limiter g(.) of Figure lb directly. The limit diffusion is

the same in both cases, and we develop the result for both cases

in order to illustrate the robustness of the performance of the

system of Figure I to mild changes in the non-linearity. This

robustness is clearly necessary for a practical system.

In analyses of PLL's (even without limiters) it is usually

supposed that the input noise is wide-band [9] and the limits sought

(explicitly or implicitly) as the BW o. It is possible for both

A , and d to depend on time, and the signal might then consist of

the variations in 0d or A0 . But for our calculations in this sec-

tion, A0 is held fixed and OL(.) = U(.), a differentiable function.

If a more general 0(.) were used (say a right-continous Markov

process), then the infinitesimal operator of that process would

play the role that the differential operator plays in the sequel,

The result is the same. We are interested in the problem for large

input noise and signal BW, say of the order O(1/q2 ), where q( - 0

as - - 0. Thus the center frequency w0 must tend to - as L - 0.



We use 0 = 0 /L, L/q -* 0 as 0, so that the center freoucncv is

large relative to the bandwidth, as in practical systems. This

scaling is appropriate for the problem and consistent with heuristic
methods for analyzing such systems. Ihe gain I. L/q is needed,

either before or just after the filter, because otherwise the ;nput

to the VCO will go to zero a< L - 0 o,-ijft to the effects of thc

wide-hand input noise [.4].

We next describe the noise model. lhe noise model is a

standard one for band limited noise and is suitably scaled for cur

method. We suppose that the noise is Gaussian, although this is

not always necessary and the modification of the result for non-

Gaussian noise will be stated when available. Let zi(. ), i = 1,2,

denote independent real-valued stationary continuous Gaussian

processes with unit variance and a correlation function - -

which decreases to zero at an exponential rate. Let qi' i 1 1,2

be random variables, uniformly distributed on [0,2T] and such

that z .(., >, i = 1,21 are mutually independent. Write

= :i(t/q 2 and define the noise

n (t) = [zl (t)cos(w 0 t+0l) + z2 (t)sin(w t+ .,)]o/q. (3.1)

If S(w) is the spectral density of ., thlen the

Lspectral densitv of n (.) is S(q (',-w 0 )) + S(q"(W+u-)). The choice

of W09 L, q in any particular problem is determined by the problem

The VCO (voltage controlled oscillator) is an oscilllator ihose

frequency deviation from a 'central' frequency is proportional to
the input signal.



J-ita and will he commented on below. ,:Or -;impl icity we set ,=K, 1.

Their values ca:n be inlcorno-raitod Into CI s ccV i r . I )

he noiN makec sonie simi ic;tt ions. First, iwe note that the

center noise frcou~encv can he changoed to any such that

) a s t '7,I i lou t a I tcr in c thei rcs ult. Next,

drop thle ;i from ( .1f-or liotal i onia s iin Ili city. lhii Jovs 11ot

'i te r tile re.:uI t '( 5 ) -o 110t It iOnl1 ip i tV 14C pe ll:

the noi ;e to the fol Iowinc aus-\aro ca<sc t CI ( t

d d t+Fdw , where w ()is a standard Wiener proces; :ind

the roots i re in the open left hand p1lane . ILdenlotesFI t
cond it ionl i nl on (s) s ,- t i\ liere (t it n j n

t t) Ziti

Assuming (for the momient) that the multiplier device does

nothing but multiply, its output is

z L (t) (Cos u' t + Cos (2 tt + ~L)+ z- (t') (snLt

+ si(2wjt + + [sin in (U sWnt)

Inl analyzing systems with practical rather than with ideal multipliers,

it is common practice to assume that the multiplier has a "low pass

Ciliter' incorpo rated with in it , and to drop the termns in (.3. 2)

containingj 2wE t. We make th i assumpt ionl ii I o.

We want to retain a structure which ii lows the signal BW to be

0(l/(1 2 I1n fac t, a f iIte r woul d o ften he used be fo-re the mul tip IieLr

to i m it the i nput no ise 13W t o th at o f the s ignalI. Th us , Co r the

momient , suppose that there is a filter in th . "Itwt i P1ier with cutoff



frequency 0(1/([') 1kw In the theoretical analys is (see SectionL: 0*

11), the t rue C, L are actual ly multip! jed ONy b\ ( and limits

taken as N - then - 0) . lThS , inl the aliaIvs IS, t h Ce ir i vat ivu s

a re bounded till i fo rmlv in 11 fo r each N. Ih is fact cain he used to

show that the terms Lfl (31. 2 ) cont a in inig 1t haen)et in theL

Iliit. But it is easier to sill~\ im lilmke the ;iSSuIMpt ion in the' Ston

tence below (3.2)~. A\ll otlier Fi lterinL actionis aire incorirorated

expl icitly into the filter box in Figulre 1.

Vhe input level A (Canl e ithert be const ant or t ime %,a rv i fl . h~e

suLppose for convenience that it is constant, and note, the Col lorin~v

I-r the time varyins: case. Let :1 (*)dnt one rc~ ~it
meanl VA I (t A), If 1cI0C j il ( is pe riod1i c rathier than a

c I tl at , u-;eC thle a r t hr11et iC m ean over the period instead ot t he

mean va I utie Suppose that thIr input miodulIat i on Ii as thle form

A0() =A tt/q 2) (bandwidth 01 l/qj'. Theni, loevslpeakiliv,, j

A1 is sufficientlI st ronc lv mi xin', the limlit reCSults ar1c tile

samie as; for thre constant N', case, Iat where An revi ace; A() inl the limit

t orm-1u11 as The calculations rc(I u i r ed( for thle proof use a conibinaition

o! the ideas of' this sect ion and of' 'ect ion V), ;%here heC consider

t be ceFfect of- variations in A ( )on thle errors inl carrier frequejIIncy

tr-ackingi, When1 aI "squaring loop"' is used.

The main reutis the f-ollowino. AS L , Lv L'

conve rges weaklIyN to the dIi f fuionl p)roces s v( , I given by,

Iethe conditional distribultions of A1 (t) , t~s) Oiven
A, (Wiiu < 0) converge fast enough to the rinc ondit ional (list ri-



iIte '* i te

i "lte r \"'-rox irat i on "II in t e r
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dx Dv + 0 1;.sin (, -) ]dt 1 11 QOdB (3.3)

d= CVdt, 0 given,

where 11() is a standard Wiener process and

4 [11 ){ .0z:.o> {z(u) 0,< 0. z.i(0 0' du

- n {iIl(u)du (0.4)

.he re i - t he' no m "a i :ed C> ich t h;! I c o I. re 1i t i on

'unct ion c,, ) if (t) SQ'xP -; I t ,a 0, thenl III( m er

can he eval natcJl and I ' n './a 14 1 Sect ion 0~.
0

F0or the zVStO em withOu~t a 1 i miter' ( and I. /q replIaced bv

ai unity gain) , the I iritin), ;-rocess is def ined by

A 0

dv [Dv + Hi_ -s i n (J- )dt + GldB,

CN-dt

2 ro r
lihere 01 JP(u~dui.

Note the "i/o" effect i~n (3.3). For small (. thlt system

with the limiter is preferable to the system without tile limiter.

The result (.)remains true for non-Gaussian noise. The P'c effect

has been demonst rated by simnilat ions on systems siiilar to those of*

this section. These simulations suggest thait the limit resuIlt>- are

often 'worst cases * in that, for small L )~the aCtulal ),Stem

oftten performs ]letter than i ndicated by tilt limni t results. In
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pa rt i cul1ir , i f the l imit res ul ts indicat e that the i m ite r i mp rov es

t',e ope rat ion , then the per fo rmance m igh t he even bet ter w~ th t he

alctual sNysteml, if the effect ive %value of Lis small. An equat ion

of the form of . can also be obtained !'or non-(aus- imn 1VCs

underi suitable conditions on the z. . hen u~ w iIl h ~i en
0

by the top line of (3.4) , but the 2 nfK 3 w i I 1h)e repI)laced bN

ai di fferent constant .

(:omment on the choice oc C1 1 1q-a) in Y:rlfla nrC-'- -

problem. For the l imit resil ts (3.3) i wthi t e x 1)- ' 11

-and a are needed. Even without kiiowlediec ot these VaILICS . .3

gives the rrmarv qualitative nroinerties. \lso, since the ci

/1(I was u1sed, it was imnl icitlv aIssume(I tiat q Was; knc'Wn . '11 hi

i s not necessary. We can estimate a/q( cK aInd -1 -'a "!,Oil,

the da ta ( from thle no rmalIi --edk co rrelIa t i oilt fun ct ion , t hc\,- ia ;I~ f, ani 1d

th)e 1n oVeT dns: it n at cen t er I-rcq uecn c v lect 1. ,
L

q a otiant itv which can be estimated. M en the 1 P ml o!

aire ren I a ced hr v'a/ an d Y 2 In 2 resp . Thus , Ion o-r know leduec

of F 0 or a1 is not needled. This is the caise for all the )rnlhhoms

which we have exami ned. For the case where the z re ('x<i;l

but with correlation function go ing t o zero exponen t ii I Iv, thle

I n 2/ a is repl1aced by (4/i') .- in- I t )d(t 4 , cct io (-) I Thec

-nsect ral dens i tv o f the noi se (near the cente r freon iencv) aifteor the

L f -l)

ca n o est i mat ed . Ifr we l et I.L he proportional1 to thec i nv'erse W,

the smiare root of this quantity, the -1/o effect" noted in 'J" v

ma intati ned.



II.l1 _ The Smooth Limiter •

\ow, we restrict attention to use of the smooth limiter '

a n d . t , . ih: - , a s1 ,. L - , i t : t e d

we mean t tt "I:n an d - , il i 4 ch :i 1.I\, tha t (I Iq ' f o r

con ithC1 I-I '10 wOAOIIICik'. ! {'pipifl thc' t

components of (5., the input to the filter is <t, it f t Where

Uo *t~ g, j + sin(
q 2q '\0.ts. l o~~~~ C (-o u+ -n)

and

V = Dv + Hlti + ,£( FU

= Cv

where the expectation E is over the zi (t) only and

['u (t, , ) = o sin( -U - ) + O(qL

Now, heorCm 1 will be appi i ed. (Given the test funct ionl

f ( ) £ , , we must find a sequence of perturbed test fuIIct ions

, f ')}satisfying the conditions of Theorem 1. (Recall, we drop

N and hN in our calculations, for notational convenience.) The

averag ing method and the technique of proof- is the same as that used

in [4) and I o and very close to that in 181. Where the details
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overlap those in [41 or [6] only a sketch will be given. For given

f(-), we use f- of the form noted below Theorem 1.

r (write x (t)), we start by at)plvin. A,

t o ft L

t x ," !. In this case the AL operation is merely a riht

derivative

A It(x tt) = I ' ,t) + +t t

Only th, "noise term", f',(xLt)lI(u1'. -uj,, of (3.6) needs to he

a.red o Ut. The other terils are part of ot close to colmuonenits

t + ) ( , where + is the operator of (tf !I(tf

the 1'1rs t re rt ur~at ion f (t t tI r
Cxu( L t,,L tt),])h] •

fxC ,t d s E f (xC ,t+s)Jffu (t+s 0 it) ~ (t)tv

Only. the -"n ie trm",Uf'(t , t)llu -) 1 '., f (3 0 e d t '

oe t t)e it), rand a is the noise" r o

L L
n ll xpret ion of th ,typs)[ (ts , (t ),Ut)) (rwt

replacing 1,teexpectatioii is over the (t+s) only, not over

(t ) or Xt Via the change 01 vtriahe 3. ) h
re I he.to onhe - s as

written as
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o- j sl. I , t+(i .i)il u (t~ , (t 't ))
Lt

,h icb is beunde,!' in absolutc xval tt hv

L ) t + " (t/q,)

(See [lr] for a related calculation; here tc use a different n ose

model than ir: l',, and n mul tipl ier rather than an adder. t(eoe

recqui re somewhat di ffe rent details and yie 1 d results which ar,,e not

directly deducible from the results of t101.) It can be checked

that f(.) E (A and that (write xk (t) = x ; the tCerv dea,,ed

simplv by the bracket { is the integrand in (3.7)) , and the sub-

scripts liand v still denote the partia] derivati %es or 1gradicnt)

L- L tsdip s F' I,

Jot

The first f e of (3.9) is the negative of- the noise term'' of

Now, examitie the second term of (3.91 which we write in

c reate r detail as (sev below t3.1) r the def,,i ti' (i the new te rs



1 dsf++x ,t+sjf(t+g t+s] - ( sg [t+s])Cv (t)

(3. 10)

1' e (L- Mi ni, yg

,here ' ' ( )i = ([u .and j t,t~s), = - -2-,- { (u (t , - ( *.

,-'- COS (t (t) I . . 0()) w0 used the de init i

A0  ,,
[t~s £ 2 '3 (t) ,: (t+s)) *-0-sin('.(t) - (t )

for the arofu(.flCt o1 g ), and the y ( are defined by

L L

Y1 Z (t+s)) [2 [ '(t+s,; sin + z2(t+s)cos

L ( t +s) S L(t+s)cos - L (t~s)sin 5L ].

lhe second term of (5.10) occurs since g,[t+s] depends on t

Now note the ilnmortant fact that for each fixed t , the ,ocesses

1 t) . t + a (t), n dt + ) are independent . hi s

roperty which will be used frequentl y, is due to the Gaussian as -

sumnnt ion on the W (. . Without it the o "11 in (3 w Iould he

ic-,iaced 1)\ I more o,-0pl icated Cxpress ion.

'Ihe first term in (.1 .I ) can he ;hown to satisfy (3.8), and so

does the component oF the second term whic h is" I inear in A0 if (. 8'

i- divi(ed by '. By the independence ci ted in the 1 as t parag raph

the expectation terh, t+t in the Second co

portent of -.1 , is -ero, and the condi t ion il xpectat ion there



I s-

A 11 J th, facts thait K/. K andtht (:

%.cj . ),It trIo re(ni-) ~lP)1tft UF i. 1) S 'yjjIiii(e&1 l .~ i-

t h c'' iI --1 1 C i'"i CMI 110 t1Qt L II t C S> P~ IHC C 3'.

SOC01fd WI<,A t !-1 0 Jt :I nd w i h the -.;ii'iC ro 5 Ill

I hll -U S n d + -rd P ? . '

'IIv the la s t teorm I- in 9 ei ins. IThe part a!thc tc't.

101 i Ch1 C01nt a) n S the1 ()Vt + II U component 01 1 is also bc.'Ided 1K

V11115, i t is Se 1I', i i ie and on I v t he rena i n i ng caimionent o t- ) ioichl

contains thC fil Lu ! ),mart Of v- mu1st he v ae urlcr.W

dCFItC th i S C()jojonet bNy k and 1r1i to it in th1 for :t 0 Y

L t C.)

! 1 Lq~~s tl jts]{ ft + 3git

7.'V



I - . . .. - 1 . .. . -

where {t , [t+s are defined elow, (3. 10)lt he expectation is ,rmj

over the ,t's term), [his Lr,,, is not ne'Iai , and must ne

,Ier!k.ed VC rtrhc 11)thine the second e rtu rba+ti , r

lihe re,

X t , ) . " .1+"t

t

i t"- * .' € J \- "m d I. '

\CfL (t) 3.l12 + iVh- ( t, ( t) + .

+ (terms whose p-i im is zero).

Thc last tc rm on the ri4ht i, [+ 1- t )IO~ ql/.

'he middle term of I").1 .1 minus I'f x t t)11 /,, tends
xv 0'

to :ero in the p-Iir sense as - 0, J - 0. This last restli

fol lows bY the same sort of argument as used in [41 Scect ion t,

SuMMiar izin' the a)oVe e1 clel at ions and ts in, the f

x , *, ) - - + t,( i(,l ds that tile %,o requilred Ii ,,its t '1

lheo rel hold, where A is the operator of1 . i. .

* i t i * ' I: -L A ( X L.

-I t .{t

I h(i i

1 v t o , IhI ,(ur m 2, I , t lness o . • o , I t k,-,, t he

ci ven hounds on 1" () and on A ' -H c .on\' rge

weakly to the ;olut ion of 3 . 3) as , , -* .
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I111 . .. S ht S_ : w t l _ tle 1. i1i t o C -1- ig.ure 11)

\ow, fh o 11 s replaced by s ign. . ard

ua  is rep I ac b w lhere

= e ri. i z (t)cos U ,

+0
-T- sin(Uu )

,-c / A l) L

ind o hol'3. 1' uscd. Also, i1 t,U ,0) ./.. sC iQ, ) +

1e function fl ' is still de fined by 7 ) u used and 1 .,

still holds. Note that the distribution of (vritc. , (t),. t

)co-, '(t+slsin + + sin(-' 1 conditioned

on data up to time t is N(me an (s), varL(sl , where N( ,P) is the

normal di stribution with mean a and variance e and

mean (sa - ,'/q~ (.-.(t)cos U z2(t)sin ' + 7%--- sin1 - -

va r s 1 , "7! 7j.

It i, convenie2nt to ,rite .) in t]he more expl ici t fw

. w th v ,- 0 ious notatIon ,It(t) -- t L (tI where

1I t , t ,f, defi lie d by

-tt L u 1 f s ipn ),dN(meanL(s), var (s)tl~t~ ,u) qc 0 o

(3.15)

(sign 4)dN(- a sin{0-J ; I) .ds

00i
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t can he shown r () th'a(A) and that tcf F .) is given

b:t 13 ~
by 53.15) .

"\t t l' - " (t F" fc {t J (.t , (t) P
A - 1t) = '-.x t ,t j!iuE (t,UL (t),J(t)J - liuE "tL() Ut)

+ .. t  'ds (t) + V d 0 t.
'I 0 t L0-

+ __ 11 :L! ds i, t t+ - j 0 V

L L

where is the inteirand in (3.7) with 11 replaced by u

When calculatinQ tie derivat ives in (3.10) , we use the explicit

representation i3. 1?), !o only derivatives with respect to para-

meters in the normal density function are taken. No derivatives of the

sign function are taken. Proceeding as in the preceding subsection,

the first two inte.<rals on the right side of (3.10) are bounded by

3. 8. Modulo a term which satisfies (3.8), the last term of 3.lo) is

1 ds 11'f _ (x (t),t+s)I1(Etsign[t+s]
qa ~0 - "q V

- F sign[t+s])(sign[t] - I sign~t]),

where [t], [t+s] are defined below (3.10).

The rest of the development is exactly as in Section 111.1,

except that, when taking derivatives in the calculation of A'FL),

2d



the explicit form of the expectation and conditional expectation

are used, analogous to what was done with fC andI the hound below,

r?3. 14) is replaced! by

(YCi C1. + L (W 3 (.17)

'The limit stil l .~



IV. (he Quad r icoErrel ato r hithout A L. init er

'he yv st en and sonic o C thlie not at ion i iven vy F iire 2.

ill Section 1I, the qiki t ions d CFin inn. the I I near t- i it c 1 are

mere IV st:te \variabl c rpresclt aIt i ons ot ]ou pa-s fi Iters. Thc

no is e mode I : i - o " Se t Itl on I I is tused lie '( re and in l i e r ex !
t0.t' .n .1 SC I,. 1 H e . Ie I..\ t 'l l 1 S 1 .'.I I'I 0 lt"', I '.-,I il , 11 .

t ' lih i K I i:l l l , i t iI le \ l o r t e 11 vi' '

Fe 1h i i s iI cC s s aiv t o t 1a rant C C t ha t h,

i 1 V t I-h 'll!l t l ,  L to t ,e i h c' ent i* at or is ,i t, 0nr

t .l e, l b i s re)'ir t ion i o .11:i 1 v I ' t I .s ie d ill Ir a c t ic i ' < t ce s

No tlie svst em state is x V ,, . Xs in Sect ion 1 I thr

1101 s e -¢C 'lt c I tiO( t 'tlC \ tI(C et r Ot be " . p pr v ided tht no[ slol t cet' er'

freqliionc mintis , , lThe purpose cl t11w c \'v ter

3 is the est imat ion of and track i np, of t t lc poss i 'l aime a Ninl

iput t reinleic , tnI ike the phase locked loop, t i 1e 1pUt to the

\'t(0 depends Oil ;a trequelcy as w I as a phlsc C r ror. ,ee th e

heur is t ic coine:mit- in 131 % wh ich are repeated be low (.1. 1 . Vl use

the -ssutpt ions on \ and I of the pr 'Vou s sect ioll.

l a1nal Vs is is very sil i ar to that of Section III and 1 :" lv

a ei det ailIs wil I e given. [he sequence I conve k ll tr.nes

w eaklv to ( ' - v 1 .' , v (' , U () ), where

A0
dv 1) V dt + I. II sin(A,t + - hdt + IlldB

A 0
d, lvdt + 1 IcoS(Awt + 0 dl + , Il,dB, 4.1

v c.t o,= c (0 ,d = v l I1 {: 2 2 0 j 2 "s )



0 t t hO C I I t i0 jIt' 1 L' 0ft i 0l'r 1 It lit, .11 A Ii h' " t t

not. n o J c I I ol I c . I I; all :I s l]i) c n O 1).

'- iti liir i ndt'ldtho.t ,'-'.t'V Col do'-, tor1 t li' t. .Pr I, thu 1' t\ t ',.rc t ion)

INe ma rk. \ ' Ii t pc I I tI\ Co rm I i . t h i. t t I1 ti It F C 1' iC 1

t hiat o r 1o1t'c 1" I t v 'cO t ho I O iiPluIt s .1 toltlo.h I ,v v t

5l1. VU ( .'t 4 1, .O + \ ui 1  t lii i 1)0, I i, '-. , ii" d itO run. ,Ot ' ib I ot"

t + + In 1 1IIt 1d I I'C I tg '- :111. TO ,

roIc~it' Ir il . I h l, t t \\tiin 'i ;lt ' ~ l tlt t, d l Lt l't t00lt l 1v o t

,. li t' I l . 1 lilIS 110 \ r icO i C I o l 0'1OT 110 I '--o e

a w o I 1i I t Ii.th' th1 A \ C ti lil ti, Oil 0 1 W .1

" OT "11 1\ "1 k 1 1 1V d 'NC 1 O11 , , I / I I

U*.t t S c , ) - , in(\,,Ct+Q u.'4) + u~ ~ Ct ,t+s *',
I" t I t

(4.2 t4 )S'11 V V $A L f
1 t * , . , cOS .\wt* U ) t + ii. * s s,t+ ,w it

L L(' t 4 Sl L
uI  Ct ,t+s;c' 'I - C:t+s)cosCAu't-U 1 : ,tislsin(,k.Jt*.u

1 .0 +s

A S k, t s* )r t + so lot if It It( a I'-i ' ) + z t im it t) 1S k( I o w

I1r0'4. 004. 1, i tS j SOCc t 01 1 11, t iIOl~ i \ iilt; 114.' a r!'iiin t K'! ow ,. ,

aitid d1d ro4. i 11i0 t 1' It V I-ms 3 Ol 1t t ho V' C he III, I II to 1114c. I I it,10air

t . teI t i 'r,, ,it I i i 1 V' , ir 11 ui t tOU {t ,* tU ) *1, . Th '
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VC( )

TI/ nhaso shi Fier

T: I

The quadricorrelator Without Limiters



V1  -'

V + I' ( ,t j ,' 

} O r • 1 L ., , , - i , L : x

\ V t) = 
tt \ t + f -(-,~ t * "' \xt ( * 4

0 ', x" V

Only the no ntt

If LI

o 4 n , hcd to be aver'i. m d out ' 0'',, 0', Cii *

are part of , + L\(x -t * hcr .A . ( cI1 . . . . ..

Thc fitirtio,, fA (t) W- ( x-

ri ;'i~ ri V

d, c n. dsct ,

T , i"tt (t 0 C d

LL

S ,ts)l 2 u ' t t';-

2 2

The hound .. .)on f ( holds, f \,

A flIx ,k



where k t % no d ,C in11, to i, x

k2 x t = L ,t~s)Hl) 1: , a + 
': "

!I f- (x ~t+, ,I! ,.l-tlL I-I( t t+ s u i t II VI  I t 2 I

+ 1- fI (x + ; I L t

t C "OUTIJcd h\'

I or each t and u' t +

,'" it,t '. and the oxpectat ion of th :e con avid 'irJ o -, - .

o .  the intcral (4.7) arc zero. Acttal l on \ ortlo.,o i v and -t

ad penc e s re u i red Ii c rei Pc I , 1:

show that f • is bounde'd by (3. : n d ;1 • , a d that

g rit ngi x = X (t)

A; t) = -(k Ix ,t) 1Ak(x ,

+ term,; bounded hv( I.

Clhan in)'l' var iab I , /q1 . L! 1 .

r)~1i~llT- .. . - .r v-.2
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o nI

a. C t i l o 1 I P .hc IncI or

S~ ~c <. 'o C! t oi 1 t I u to t i , ! ov , :'C , .

I w Cl tt I. t ol- I

S I t , t t J
Due! tS o >the n n-iff r n iLb v -*l j1

T 11 C o\l TI, Iu P

se.tion ho 'ou -- tov the iO\\ I'i"" H 20 0-,:-

* x!)- C -t .t

* s I w[ I ii Ic I a0 th 15 n Cylr 1 AO L f -Ic "i t

tue to the non-differentiability o the sin un,- , ,,

exol.i cit inten~ral representation of (5.1., of t-he ',%s," .-

used when cal culat ing Al t. f . ) . ! "a cowh i,+a t i,,n .. ',. ,'.- ,

7

Sect ions If 1.2 and T\', we( catn show t hat <i\ ',.

a'eakl)" to the (l f "ru[is ion x (. 1 = (C 1 ( , , , I,

dv 1  . ( I

= (1)2 ' + 2'\0 L2 co ' t4--" 1 ++1 H 2 0

,= v'D'C' v dt

"". .. .h .... ... . ... . .. .. . .... .. ... .. . . :" + " " " -:.. ..F lll ' i .. ..... 1+ 1 xa ' .a . .. .. , , :- ,., , .



where P. are indepondent stadar BOWn Plot 1:on'S ~

def ined 1,v 54 Note the "1/:7 (uffect' In Y

are indeniendent owinv to the ",aus,;ian assumption. )', >

the 11 t i 2 zi = I ' tre i n depen dent oi- c:ic'

This in tnni-, is dtie to the "2 1,s sa S CS t c r



- 3 -

VI. The Squaring Loop

In this section, we do an asymptotic analysis of the system

of Figure 4, whose purpose is to "track the carrier frequency"

irrespective of the input modulation process ma(). We will study

the effects of the ! (. on the estimation error process

W (. u (.L for small noise, and, eventually, do a Iineari zation

analysis. 1or notational convenience, scale such that K, = 1. In

a sense, the procedure below is an attempt to rigorize the heuristic

analysis of Gardner 131, Appendix B. The limit equations are given in

(6.14)- (6. 15).

For specificity, let the transmitted signal be pulse phase shi K

or amplitude modulated in the following way. Wve will scale the rrobler

so that a meaningful result can be obtained for small pulse widths

and small noise. Let p(-) denote a realizable transfer function,

continuous for t > 0 and right continuous at 0, and set i) (t) =

2

p(t/q where +-/q. - 0 as a 0. Let jaki he a sequence of bounded

-ero mean independent random variables with unit variance, and set
m*t = akp (t-kT), where T = Tq- denotes the width of the

k =  - ,, - - L

pulse interval , T being some given constant. Suppose that there is

a bounded non- increasing function p( • ) such that I p(t) 1p(t) and

i dt C du p (u . The general technique of this section can be
)0 "t

used with t greater variety of modulation types, and the independ-

ence of {ak} can be weakened. The input noise n (.) has the form:

n (t) = [z(t)COS WE Ltnat =[ (t os 0t + z2(t)sin 0tj o .



+ n

V C 0

The l-; 1qua rIVLoon



F- IF

where - t" and i(. are defined in Section Ill.

In this section, the arialvsiV is done for small noise, as essentially

, Anen Pdi , , we do not d i 'ide n ( ) , v

J-= ) q ) , an-i Ihat the . I are independent of
a 1,

TIh scal ing is of tle corrtct order for a meaniniful rrollei.

The sinal ind noise BW's arc both (I I- ) . The sequence ,1

is the t ransiitted s iial sequence and the p vield(.1 the

transmission channel behavior ("intersymhol intcrference"). The

"memorv'' in the "svmbol interference" system is roughlV the same

number of pulse intervals, irrespective of A- Also, for small ,

thle average noise energy per pulse interval is of the same order

as the signal energy in that interval. With an inappropriate scaling',

the problem would degenerate, as L- 0, to one in which detection

was either perfect or purelv random. In our case, I - )d.; --
J0o(T and signal (s) + n(s)]ds - N[O(T ),o(r)] So the

detection problem does not degenerate as e -0 0.

Since we wish to work with small errors and to eventually do a valid

lineariZation, let 0(0)
-  '(flj) = O(q). This ill tiuirantee that 60'(t)

(t - ( t =(q .) for any uinite t. If we wish to assume

L (qJ ( (1A for some 'A E (0,1), then a different scaling would

h usc,! in the ;eque I , biIt h is point w i I I not be pursued.

ihe circuit of Figure 4 was investi gated by Gardner 13,

Appendix B, and elsewhere, using good engineering intuition, but

without the benefit of the asymptotic theory, and required some

ad-hoc assumptions (e.g., holding the state variable dL(t) fixed



t 1 :r'uh ~ at iJ n- i.e.,:mae spect ral methods on a non-

I i ni o0 er. A\n-, ver i f i ;It ifin of that techniique and rc.su 1I

araa;al I i t h i in "a svmp t ot i c s, tuLa t ion 01) C ' I ed

The anal Is I " iarttki inl a convent i onal way , i)y inainrl certnl

c xpirs Iens in,! d ropp ing sonic of, the termls. Tlhis procedurec, conmont cJ

0!' bclo., c7an k('ioi e at the- expense of addlitional detai I and

notat ion . li Ist , square thle input, expand the p~rodcIItS of the obtained

t riVOIOMOint Ic i f!unct ions; in the usuialI way inj t erms of the sumil of sines

aLnd cosines' of the sums and di fference of the angles. Drop the. terI-ms,

w hose si1n o)r -os fact or doe s no t c onlta i n a 2.. We suppose tha't tile

suiuarer contains a linlear hli £,h pass filter Which does thlis . S i lce

thle BW of the dropped terms ;nd the BW about 2-'_o f t he re ta i ticd

terms is C~,, there is nlo problem inl expl ic it ly nt rodluc it Such

a filter, but it unnecessari ly complicates the notation. Nevx t,. hlavinlg

dropped the cited terms, multiply the remaindler by the VCO0 output

sin ?jt C-t),expand the products of thle trijionometri c funct ioens-

as above, hut now dIrop the termis wqhose sine or cosine fact or cenlt aiius

111 in the airgument. We suppose , as in previous sect ions , that

t le mu It ipl ier c:ontains a lovw pass filter which does this. In fact,

such an assumrpt ion is not neces;sa rv, and if' the dropped terms were,

carried through thle analys is, they would not afUfect the I imilt. B~ut,

for notational convenience, i t i s hielpful to drop them at this point .

De note the res ul ting t erm, thle mulIt ip i e r output , by utu(t)

u~ t t, t) where

-K VL2

u(t,OL m,(t)sin 2( -0 ) ~t(t) s in(-28)

- Now"
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22

+ z2(t)cos(O 2 f] + 2- Z2t s

+ :,-t (t)cos 2G].

t- L
1e ne x = n X. v . Then

-K 2

L(t) sin (0-e)xl  , x l  I[------ -- - I

HKl m (t) L L

+ k ) tzl(t)sin(u -20 ) + z (t)cos(Ui -2  )} (6.2a)

I L s Lt)zit)
+ l tl 2~- cos 2Gci

, -m. iL -L2

1) +[j -1-m-t)sin 2(V 11!IK J ~ m(

q1 2( 7(- vi L2

/q, (6 2c)

where (6.21 -defines the v-. i c Owing to the normalization, ,e re
QL

quire that ' ,/q. converge to a right continuous function J

fwith left-hand limits) as F- - 0, or else we deal with a subsequence

which does converge. We assumed E = OW.) in order to be able to

do the linearization analysis below. For such a linearization to

be valid, we must have 0 (.)- 0 as E (1. If the rate is slower than

O(q ), the effect of the 0 (.) variations on the tracking errors in-

.- L
crease to - relative to the effects of the m(- and nl (,). Our scaling

is the in i qu one for which the noise and ,( 1.1 effects are commons -

urate . or sma I 1 ( .

.



Lie f ine

JI- s <fl(d, k F)I
Ti T I,=

We no%% ioi low% a proced-ure x'erv similar to those ot' thle 01nvious

s c t o ns , aca I n omi tt imni mo-t det a ils. I'e ma in Ji f fe rences be ing

due t o t he !nor iod icity OF I II ( S and of- (0.9) , wh ichi roices uls t c

uISO an add itioni I1 averai~ ill,,. We have S ill 2 Q - ) +

N.,~ .owing to the asupto ont11tii odtos

f the 0) ab ove we re ca rr ledl thl rouih t lie I nai1Nvs i s, i t hould (

cont ribute n o th i no to thc lim it . For convenieonce i n the analy I vc

here , it i s drop e he c f th and we reri1ace sin 2 (, L -

I 2 h x-,. h s nu t be ep n ind in the man iP !1Iat ions

be low. We USe the form fLtI=fx,)+ f(t) for thle pertrbe

test function.

As usual for f( E (W r it c xL =X(t))

.Xf(L =f (XL ,t) + xL't)~ + f~ (.XL,t). (.3)

Again, tile components of' (0.-)) containin) the processes in ( o r

I mutst be ave raged out . Th li0F I. S t t ermI whl i c hi, we w il ave r ave

out i.- 17 x ,t )Ilj[ -KiK(t)X 12 1 . 1:0or this, We use the test f'unctionl

perturbation f (t) =fL (Xt ( t ,t , where we define

ft xE.K L 11 L-

(6.4)

f 1 qX ( X L t + f l &S~ j jL [ 2 ( t ... 2 ) (12 X L d



1j.. t c 1) 1unnt ion js o n 1 () and on i.a i - t q

2t
1) -- +- I S , I 0 S ~~"and is inltegrle

-q

s 111i i tori I in1 t 1 S SinTce thIe Abo-ve Sumil i s pe ri Od Ic w Ith 11ecr 1( o'1.,

C~ cen11te 0 a'V Ibout i ts- a r i thfine t i c mevanll in (o~."I F he

iintegral inl 0- ( i S) is (-

We have C() E ) and iI can read i .1 y be shown that

0 L in L

Thus, the m • I term in ((.1) contributes onlv its mean value

to tihe linlit equat ion. See (0.11) for the stunmarizing calculat ion.

Next. %,e :iverace out the "remain ing" noise termis in 0. 31 .
This. 'equ i es is usual) f L (\L ( t tLt , iheie

o /(t~s'U it), ) y Its)ds
t) l'f (x ,t+s)lt  .3 - Xl t

jo *t

4 11I' f (x '

As usual tii "remaining" noise term in (0.3) i; just the sum of the

integrands in 1 (,.5, evaluated at s 0 . Bv using the chan ge of

L
var i able s/i s we can show that (t is, bounded by

[ 1((t ) - I

Proceeding as usual, we next get that
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" t -(integrand of (6.5) evaluated at s = 0

(6.6)

+ (terms whose p-lir is zero) + Q (x ,u (t),t)
C-* 0

whe re

Q x t)) (f (x (last two terms Pr riv h sidcl'Xl ' 
.-

of (6.2a)).

The second term on the ri,,ht side of (6.6) is bounded bv

O(qE) [1+iZ t I Z . Actually, Q(x 1 , 1 (t),t) is iust (6.5) with

f replaced by f and multiplied on the rieht by the loitx1  Xl11
two terms on the right side of ((.2a).

Using the mutual independence of the {z (-), i = 1"2,mL

processes together with the fact that the have mean zero mid are

Gaussian and that sin2 u + cos 2 u - 1 we get that

K2a2
FQ (x ,(jLt),t) =- 'f0X Xj t+s)tIP(s/qw )Eni (t+s)n (tlds

10.8)
i a-2  j '),2(s/ 2 ,+ Y ( ) L f I f l x ( x f , t + s ) 2 2 ) (s ,

where

EMIL("SX)ML(t I pL(t+s k'rL pE(t-kTI'. (0.9)

The expression (6.9) is periodic in t (period 1.). Because



of thi: periodicity, an arithmetic aIverae d (147 i used iin

defirlin the ceritering term' for f.

Lot us write

(t++S)I1E(t+L~d m (s/q: )

T

2)t s + - Ip t-~ +' U k'1 1 C0 .10)

LL

NOW, de'f inIe f( ) f f~t f.~x (t't) , whe re

f-( t)~ 0 rJo If (,t+t[+s)!I{1E JIxr(t+ L+S) 1 t +L)I1t+ +sIfly(t+t

L2 

2

- Ks/q )k'(s,/q)

O~IA I~j ~i'f (x t+-L+, [ll ,L'(t+L 4 -:;)nl (t+L+s-)vN{t
,)q- 0 0'

+ V (t+'L-4S)VLt+Itrn t+TA](.1

* I1~e enterig teni in (6 1isl pI el (68 bu wi t L )VL (t+,)t

*replaced by its arjtbntk: iean V(S/ It can be shown that f' (t) is bounded by



O(q7) [1+ 1 (t) 6  .

and that

f = t 6.81 (but with Fin t+s)IQ(t) replaced by V/q

2 L2
- )~()t)+termis satisfN i ri ( 6. 12). (6.13

Summarizing the above calculations and writing x for x (t)

yields

2

p-lir = 0
L 0 i=0

p-lira [A~fL(xL t) 3__.- + A)f(, _ 0

where

Af(x,t) = f' (xt)[Dx1 - 1 2 + ] (x ' t)[e-Cx l ]

22 (6.14)
4 ~ K1a2

+ - (s)ds + P(s)V(s)ds]l'f x  _(x't)It.

lightness can also be shown by applying 16, Theorem 11 with the givten

order estimates. By Theorem 1, {x ()} converges weakly to

x(') (x 1 ',x 2 (.),where

dx 1  [Dx 1 - II K2o 2
2 /2]dt + 12- o31ldB

dx, = [- Cx ]dt, (6.15)

B()= standard Brownian motion,



42

where o. is the last bracketed term in (6.14). With non-Gh
Gaussian noise, the limit is the same except for the value of 23

3'!
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